

MOSAICS Sensor Strategy

November 4, 2020

Beverly Novak

Sensor Selection Requirements

MOSAICS
Sensors/IDS/IPS
Deep Dive

MOSAICS

Sensor Selection Requirements

MOSAICS Sensors/IDS/IPS **Deep Dive**

- **Mosaics Technical and Functional Requirements** used
- Intrusion Detection Systems (IDS) selected from suggestions from groups
- Weighted requirements helped with the down select - 1 or 0

Looking for IDS that worked In the Perdue Level 0,1 and 2

Commercial Products

Level 5	Enterprise
Level 4	Site Business Planning and Logistics
Level 3	Plant-Wide Operations and Control
Level 2	Area Operations
Level 1	Basic Control Safety Critical
Level 0	Process

Down Selection

MOSAICS Sensors/IDS/IPS Deep Dive

- After Weights were applied
- Companies were contacted for personal contact
- Took advice of an INL cyber security person
- Four systems were selected

Α	В
Technology	
,	
Does the product provide diverse assessment or support	
of 3 OT characteristics (Ex. supports robust protocol	1
assessment, flags, and methods to ensure latency	
>100ms are not introduced, ICS Tags, OTA Flags etc.)	
Is the product applicable to Purdue layers 0, 1 or 2?	1
Is the product commercial?	1
Has the company been in business selling products for 5	4
years or more?	1
Protection & Policy	
Does the product control local and remote user access to	0
networks and devices?	Ŭ
Does the product protect from data egress?	1
Does the system log security-related actions and	0
operations in network and systems?	Ŭ
Does the product monitor for unauthorized access? (Ex.	
boes the product monitor for unauthorized access: (Ex.	
unauthorized use of account, resources, bypassing	1

Testing of the IDS

MOSAICS
Sensors/IDS/IPS
Deep Dive

Utilized the SCEPTRE system developed at SANDIA

- Virtual system to set up network
- Setup a small system to test against

MOSAICS

2020 **INDUSTRY** DAY

Testing of the IDS

7 Attacks used to test the IDS **Systems**

- DNP3 attack
 - SCADA communication protocol
- Eternal Blue
 - Zero-day attack against Microsoft Server message Block
- RDP Scan
 - Remote Desktop Protocol
 - Exploited internet-exposed RDP Services
- Port Scan
 - Hackers use Nmap to scan the listing ports on a machine
- SSH Brute
 - Brute force attack against remote services Secure Shell
- Telnet Brute
 - Brute force password auditing against telnet Servers
- Mas Dos
 - Denial of service Attack
 - Flooding the incoming traffic

MOSAICS Sensors/IDS/IPS **Deep Dive**

PACKETS

Using ELK

- Forwarded all syslog events to ELK
 - Allowed us to see all the results in one screen

MOSAICS
Sensors/IDS/IPS
Deep Dive

Test Battery

- Excel spreadsheet that holds all the tests
- At least one test for each requirement
- Several tests are finding vendor claims, then verifying claims
- Three different levels
 - 0 test did not pass
 - 1 test passed but only partially
 - In the case of a buffer overflow attack the NIDS may alarm that unallowed traffic has occurred
 - The severity of the alarm may not match the severity of the attack
 - 2 test passed with correct output
 - In the case of a buffer overflow attack the NIDS must alarm that they found a buffer overflow attack
 - The severity of the alarm must match the severity of the attack
- 48 total tests completed

MOSAICS
Sensors/IDS/IPS
Deep Dive

Results

- Four IDS systems were compared
 - 3 Machine learning
 - 1 Signature based
 - 3 were virtual machines
 - 1 was actual hardware
- Point system for findings
 - One system was 1 point above the other three
- Findings were presented at the MOSAICS TM

MOSAICS
Sensors/IDS/IPS
Deep Dive

Questions and Answers

MOSAICS
Sensors/IDS/IPS
Deep Dive

MOSAICS

